
TECHNICS AND INFORMATICS IN EDUCATION
6th International Conference, Faculty of Technical Sciences, Čačak, Serbia, 28−29th May 2016

TEHNIKA I INFORMATIKA U OBRAZOVANJU
6. međunarodna konferencija, Fakultet tehničkih nauka, Čačak, Srbija, 28−29. maj 2016.

UDK: 004.41/.42:519.68 Review paper

Computable functions and lambda calculus
Marko Stanković1

1Pedagogical Faculty in Vranje, University of Niš, Vranje, Serbia
e-mail markos@ucfak.ni.ac.rs

Abstract: The lambda calculus is one of the more known formulizations of the effective
procedure and is widely applied in functional programing. In relation to this, the main goal
of this paper is to show a way of interpreting some computable functions via lambda terms.
Thus, the paper gives a special insight into interpreting Boolean functions, Church’s
numerals and the most important arithmetic operations with them. A review of some
combinators which have been proven to be useful when dealing with lambda terms is also
given. Finally, an idea of proofs is presented and it shows that the class of lambda
computable functions is equal to the class of primitive recursive functions.

Keywords: lambda calculus; lambda definability; Church numerals; computability

1. INTRODUCTION
The 𝜆𝜆-calculus is a collection of several formal systems, based on notation devised by
Alonzo Church during the 1930's. It is made to describe the simplest ways in which
operators and functions can be combined so as to get new operators.
In practice, 𝜆𝜆-system ha an infinitely big grammar structure, depending on what it is used,
Some have additional symbols of constants, but most was achieved through syntax
limitations (for example, by restricting them to exactly specified types).
In the development of the algorithm theory there have been several formulations of an
effective procedure. The most famous formulations, apart from 𝜆𝜆-calculus, are certainly
Turing's machines, Unlimited Register Machine (URM), primitive recursive functions, 𝜇𝜇-
recurrsive functions, Post's systems etc. Although they all seem completely different at
first, all procedures determine one and the same class of functions.

1.1. Primitive recursive functions
We say that the function 𝑓𝑓:ℕ𝑘𝑘 → ℕ is computable only and if only there is an effective
procedure that, given any 𝑘𝑘–tuple (𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) of natural numbers, will produce 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘)
(Enderton, 2002:209).
Definition. Class of primitive recursive functions contains initial functions:

• Zero function 𝑧𝑧(𝑛𝑛) = 0, for each 𝑛𝑛 ∈ ℕ,
• Successor of a natural number function 𝑛𝑛, 𝑠𝑠(𝑛𝑛) = 𝑛𝑛 + 1 and
• Projection function 𝑢𝑢𝑖𝑖𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑥𝑥𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛,

And all functions which are derived through final number of applications of the basic
operations:

397

mailto:markos@ucfak.ni.ac.rs

Engineering Education Marko Stanković

• compositions, i.e. if the functions 𝑔𝑔:ℕ𝑚𝑚 → ℕ i ℎ1, … ,ℎ𝑚𝑚:ℕ𝑘𝑘 → ℕ are already
defined, the function 𝑓𝑓:ℕ𝑘𝑘 → ℕ is also defined so that it stands for all
(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) ∈ ℕ𝑘𝑘: 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘) = 𝑔𝑔�ℎ1(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘), … ,ℎ𝑚𝑚(𝑥𝑥1, … , 𝑥𝑥𝑘𝑘)� and

• primitive recursions, i.e. if the functions 𝑔𝑔:ℕ𝑚𝑚 → ℕ and ℎ:ℕ𝑚𝑚+2 → ℕ are already
defined the function 𝑓𝑓:ℕ𝑚𝑚+1 → ℕ is also defined so that it stands for all
(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) ∈ ℕ𝑚𝑚:

𝑓𝑓(0, 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = 𝑔𝑔(𝑥𝑥1, … , 𝑥𝑥𝑚𝑚),
𝑓𝑓(𝑛𝑛 + 1, 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) = ℎ(𝑓𝑓(𝑛𝑛, 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚),𝑛𝑛, 𝑥𝑥1, … , 𝑥𝑥𝑚𝑚) for 𝑛𝑛 ∈ ℕ.

Limitation of this class is its closure to the operation of minimization which must be
bounded. “By eliminating this limitation (through the introduction of the unbounded
minimization) we get a class of partially recursive functions, which coincides with
computable Turing functions” (Ognjanović, Krdžavac, 2004: 27).

2. CHURCH’S NUMERALS, DEFINABILITY
2.1. Natural numbers
𝜆𝜆-calculus is a theory of functions and algorithms, so the only possible way for interpreting
numbers in 𝜆𝜆-computations is regarding the same as if they were algorithms. However, a
number is not an algorithm, but a datum. Although the situations may seem impossible, it is
still possible to regard a number for an algorithm. For example, number 2 can be “built” by
applying zero twice in the successor function. Appropriate 𝜆𝜆-term which describes this
situation is 𝜆𝜆𝑓𝑓𝑥𝑥. 𝑓𝑓(𝑓𝑓𝑥𝑥). It is important to stress that the algorithm is independent from the
actualities of zero and successor function.
Therefore, natural number 𝑛𝑛 (and zero), marked 𝑛𝑛, is interpreted as 𝑛𝑛� ≡ 𝜆𝜆𝑓𝑓𝑥𝑥. 𝑓𝑓𝑛𝑛𝑥𝑥, where
𝑓𝑓𝑛𝑛 is defined in the following way: 𝑓𝑓0𝑥𝑥 = 𝑥𝑥; 𝑓𝑓𝑘𝑘+1𝑥𝑥 = 𝑓𝑓(𝑓𝑓𝑘𝑘𝑥𝑥). This type of natural
number coding was created by Alonzo Church and terms are named because of him as
Church’s terms. Church’s coding is one of many possible ways (there are also Mogensen-
Scott coding, which got its name by Torben Mogensen and Dana Scott). The technique in
which data is seen as algorithms can be expanded on all (inductively defined) data.

2.2. Lambda definability
For a function which can be interpreted by 𝜆𝜆-terms we say is 𝜆𝜆-definable and we formally
define it in the following way.
Definition (𝜆𝜆-definability). We say that the function that partially recursive function
𝑓𝑓:ℕ𝑘𝑘 → ℕ is 𝜆𝜆-definable if for some term F stands:

𝑓𝑓(𝑛𝑛1, … ,𝑛𝑛𝑘𝑘) = 𝑚𝑚 ⇒ 𝐹𝐹𝑐𝑐�𝑛𝑛1 , … , 𝑐𝑐�𝑛𝑛𝑘𝑘 =𝛽𝛽 𝑐𝑐�𝑚𝑚
𝑓𝑓(𝑛𝑛1, … ,𝑛𝑛𝑘𝑘) =↑ ⇒ 𝐹𝐹𝑐𝑐�𝑛𝑛1 , … , 𝑐𝑐�𝑛𝑛𝑘𝑘has no normal form.

We say that the term, 𝜆𝜆-defines function 𝑓𝑓.
Also, it stands that

𝑓𝑓(𝑛𝑛1, … ,𝑛𝑛𝑘𝑘) = 𝑚𝑚 ⇔ 𝐹𝐹𝑐𝑐�𝑛𝑛1 , … , 𝑐𝑐�𝑛𝑛𝑘𝑘 =𝛽𝛽 𝑐𝑐�𝑚𝑚
𝑓𝑓(𝑛𝑛1, … ,𝑛𝑛𝑘𝑘) =↑ ⇔ 𝐹𝐹𝑐𝑐�𝑛𝑛1 , … , 𝑐𝑐�𝑛𝑛𝑘𝑘has no normal form.

and
𝑓𝑓(𝑛𝑛1, … ,𝑛𝑛𝑘𝑘) =↓ ⇒ 𝐹𝐹𝑐𝑐�𝑛𝑛1 , … , 𝑐𝑐�𝑛𝑛𝑘𝑘 =𝛽𝛽 𝑐𝑐�𝑓𝑓(𝑛𝑛1,…,𝑛𝑛𝑘𝑘).
Therefore, in much simpler case when 𝑓𝑓:ℕ → ℕ for 𝑓𝑓 we say it is 𝜆𝜆-definable only and

398

Engineering Education Marko Stanković

only if there is a 𝜆𝜆-term 𝐹𝐹 so that 𝐹𝐹(𝑛𝑛�) =𝛽𝛽 𝑓𝑓(𝑛𝑛)���� .

2.3. Boolean values
We define interpretations of Boolean values as 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡, 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 and term which interprets 𝑖𝑖𝑓𝑓.

𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 ≡ 𝜆𝜆𝑥𝑥𝜆𝜆. 𝑥𝑥 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 ≡ 𝜆𝜆𝑥𝑥𝜆𝜆.𝜆𝜆 𝑖𝑖𝑓𝑓 ≡ 𝜆𝜆𝜆𝜆𝑥𝑥𝜆𝜆.𝜆𝜆𝑥𝑥𝜆𝜆
In other words, 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 is a function of two arguments which returns its first argument, and
false is a function which returns its second argument. Term 𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 should be read “if 𝑖𝑖
then 𝑖𝑖 else 𝑖𝑖“. Also, it stands 𝑖𝑖𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 ⊳𝛽𝛽 𝑖𝑖𝑖𝑖𝑖𝑖. Then, if 𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 we get:

𝑖𝑖𝑓𝑓 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡𝑖𝑖𝑖𝑖 ⊳𝛽𝛽 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡𝑖𝑖𝑖𝑖 = (𝜆𝜆𝑥𝑥𝜆𝜆. 𝑥𝑥)𝑖𝑖𝑖𝑖 ⊳𝛽𝛽 (𝜆𝜆𝜆𝜆.𝑖𝑖)𝑖𝑖 ⊳𝛽𝛽 𝑖𝑖.
Similarly we get 𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡𝑖𝑖𝑖𝑖 ⊳𝛽𝛽 𝑖𝑖. Previous deliberation stand for arbitrary term 𝑖𝑖 so that
𝑖𝑖 ⊳𝛽𝛽 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 or 𝑖𝑖 ⊳𝛽𝛽 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡.
Based on Church – Rosser theorem (Hindley, Seldin, 2008:14), it follows that 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 ≠
𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 because 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 and 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 are different normal forms. Conjunction, disjunction and
negation we interpret:

∧≡ 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑖𝑖𝑓𝑓 𝜆𝜆𝜆𝜆 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 ∨≡ 𝜆𝜆𝜆𝜆𝜆𝜆. 𝑖𝑖𝑓𝑓 𝜆𝜆 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 𝜆𝜆 ¬≡ 𝜆𝜆𝜆𝜆. 𝑖𝑖𝑓𝑓 𝜆𝜆 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡
Definitions can be checked by simple calculations. For example, ∧ 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 ⊳𝛽𝛽 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡.
Often instead of 𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡 we use 𝟏𝟏, and instead 𝑓𝑓𝑓𝑓𝑓𝑓𝑠𝑠𝑡𝑡 we use 𝟎𝟎. “Notice that the Boolean 𝟎𝟎 is
the same term as the numeral 0�, while Boolean 𝟏𝟏 is different from the numeral 1�“ (Krivine,
1993:32).

3. ARITHEMTICS ON CHURCH’S NUMERALS
Let us define the interpretation of calculation functions with Church’s numerals.
Function of addition we define as: 𝑓𝑓𝑎𝑎𝑎𝑎 ≡ 𝜆𝜆𝑚𝑚𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚𝑓𝑓(𝑛𝑛𝑓𝑓𝑥𝑥). Let us check the definition of
adding in the following way:

𝑓𝑓𝑎𝑎𝑎𝑎 𝑚𝑚�𝑛𝑛� ≡ �𝜆𝜆𝑚𝑚𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚𝑓𝑓(𝑛𝑛𝑓𝑓𝑥𝑥)�𝑚𝑚�𝑛𝑛� ⊳𝛽𝛽 �𝜆𝜆𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚�𝑓𝑓(𝑛𝑛𝑓𝑓𝑥𝑥)�𝑛𝑛� ⊳𝛽𝛽
⊳𝛽𝛽 �𝜆𝜆𝑓𝑓𝑥𝑥.𝑚𝑚�𝑓𝑓(𝑛𝑛�𝑓𝑓𝑥𝑥)� ≡ 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑔𝑔𝑥𝑥.𝑔𝑔𝑚𝑚𝑥𝑥)𝑓𝑓�(𝜆𝜆ℎ𝑥𝑥.ℎ𝑛𝑛𝑥𝑥)𝑓𝑓𝑥𝑥� ⊳𝛽𝛽
⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑔𝑔𝑥𝑥.𝑔𝑔𝑚𝑚𝑥𝑥)𝑓𝑓�(𝜆𝜆𝑥𝑥. 𝑓𝑓𝑛𝑛𝑥𝑥)𝑥𝑥� ⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑔𝑔𝑥𝑥.𝑔𝑔𝑚𝑚𝑥𝑥)𝑓𝑓(𝑓𝑓𝑛𝑛𝑥𝑥) ⊳𝛽𝛽
⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑥𝑥. 𝑓𝑓𝑚𝑚𝑥𝑥)(𝑓𝑓𝑛𝑛𝑥𝑥) ⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. 𝑓𝑓𝑚𝑚(𝑓𝑓𝑛𝑛𝑥𝑥) ≡ 𝜆𝜆𝑓𝑓𝑥𝑥. 𝑓𝑓𝑚𝑚+𝑛𝑛𝑥𝑥 ≡ 𝑚𝑚 + 𝑛𝑛��������

Function of multiplication we define as: 𝑚𝑚𝑢𝑢𝑓𝑓𝑡𝑡 ≡ 𝜆𝜆𝑚𝑚𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚(𝑛𝑛𝑓𝑓)𝑥𝑥. Let us check the
definition of multiplication in the following way:

𝑚𝑚𝑢𝑢𝑓𝑓𝑡𝑡 𝑚𝑚�𝑛𝑛� ≡ (𝜆𝜆𝑚𝑚𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚(𝑛𝑛𝑓𝑓)𝑥𝑥)𝑚𝑚�𝑛𝑛� ⊳𝛽𝛽 (𝜆𝜆𝑛𝑛𝑓𝑓𝑥𝑥.𝑚𝑚� (𝑛𝑛𝑓𝑓)𝑥𝑥)𝑛𝑛� ⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥.𝑚𝑚�𝑓𝑓(𝑛𝑛�𝑓𝑓)𝑥𝑥

≡ 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑔𝑔𝑥𝑥.𝑔𝑔𝑚𝑚𝑥𝑥)(𝑛𝑛�𝑓𝑓)𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝑛𝑛� 𝑓𝑓)𝑚𝑚𝑥𝑥 ≡ 𝜆𝜆𝑓𝑓𝑥𝑥. �(𝜆𝜆ℎ𝑥𝑥.ℎ𝑛𝑛𝑥𝑥) 𝑓𝑓�𝑚𝑚𝑥𝑥
⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝜆𝜆𝑥𝑥. 𝑓𝑓𝑛𝑛𝑥𝑥)𝑚𝑚𝑥𝑥 ⊳𝛽𝛽 𝜆𝜆𝑓𝑓𝑥𝑥. (𝑓𝑓𝑛𝑛)𝑚𝑚𝑥𝑥 ≡ 𝜆𝜆𝑓𝑓𝑥𝑥. 𝑓𝑓𝑚𝑚⋅𝑛𝑛𝑥𝑥 ≡ 𝑚𝑚 ⋅ 𝑛𝑛�������

Exponentiation is defined by term 𝑡𝑡𝑥𝑥𝜆𝜆𝑡𝑡 ≡ 𝜆𝜆𝑚𝑚𝑛𝑛𝑓𝑓𝑥𝑥.𝑛𝑛𝑚𝑚𝑓𝑓𝑥𝑥.
Function of successor of a natural number is defined with 𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐 ≡ 𝜆𝜆𝑛𝑛𝑓𝑓𝑥𝑥. 𝑓𝑓(𝑛𝑛𝑓𝑓𝑥𝑥). Function
𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐 is defined in such a way so that reduction 𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐 𝑛𝑛� ⊳𝛽𝛽 𝑛𝑛 + 1������� stand. This is discussed in
more detailed manner by Mazzola, Milmeiste and Weissmann, (2005:327).
Function which checks whether a numeral equal to zero is interpreted as 𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖 ≡
𝜆𝜆𝑛𝑛.𝑛𝑛(𝜆𝜆𝑥𝑥.𝟎𝟎)𝟏𝟏. Function is defined in such manner that reductions 𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖 0� ⊳𝛽𝛽 𝟏𝟏 and

399

Engineering Education Marko Stanković

𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖 (𝑛𝑛 + 1)���������� ⊳𝛽𝛽 𝟎𝟎.
Function predecessor of a natural number can be defined by a combination of some
functions which were introduced before. Ordered pair (𝑓𝑓, 𝑏𝑏) in 𝜆𝜆-calculus can be
interpreted by term 𝜆𝜆𝑧𝑧. 𝑧𝑧𝑓𝑓𝑏𝑏. From the ordered pair we can isolate the first (second) element
by using the 𝟏𝟏 (𝟎𝟎). Function 𝛷𝛷 ≡ �𝜆𝜆𝜆𝜆𝑧𝑧. 𝑧𝑧�𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐(𝜆𝜆𝟏𝟏)�(𝜆𝜆𝟏𝟏)� is generated from the ordered
pair (𝑛𝑛,𝑛𝑛 − 1) (which is marked shortly with 𝜆𝜆), ordered pair (𝑛𝑛 + 1,𝑛𝑛 − 1).
Sub-expression 𝜆𝜆𝟏𝟏 isolates the first element from the pair 𝜆𝜆. New pair is formed using this
element, which in this case is enlarged by 1, while the second element is just copied in the
new pair.
Predecessor of the number 𝑛𝑛 is obtained by applying 𝑛𝑛 times the function 𝛷𝛷 on the ordered
pair (𝜆𝜆𝑧𝑧. 𝑧𝑧0�0�) and then it the second element of the ordered pair is isolated 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 ≡
(𝜆𝜆𝑛𝑛.𝑛𝑛𝛷𝛷(𝜆𝜆𝑧𝑧. 𝑧𝑧0�0�)𝟎𝟎).
It should be noted that the value of the function 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 when it is applied to zero, is zero.
Function of subtraction is defined as 𝑠𝑠𝑢𝑢𝑏𝑏𝑡𝑡𝑡𝑡𝑓𝑓𝑐𝑐𝑡𝑡 𝑚𝑚�𝑛𝑛� ≡ 𝑛𝑛� 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 𝑚𝑚� . The function will 𝑛𝑛 times
apply the function 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 on the interpretation of number 𝑚𝑚, which will give the desired
result.
For example, we can now interpret the function of natural numbers 𝑓𝑓 in 𝜆𝜆-calculus. Let us
presume that the function 𝑓𝑓 is set with

𝑓𝑓(𝑛𝑛,𝑚𝑚) = �2 + 4𝑚𝑚, 𝑛𝑛 = 2,𝑛𝑛 = 0,
𝑛𝑛 + 5𝑚𝑚, otherwise,

then the appropriate 𝜆𝜆-term1 is:

𝜆𝜆𝑛𝑛𝑚𝑚. 𝑖𝑖𝑓𝑓 �∨ �𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖�𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎(𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 𝑛𝑛)�� (𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖 𝑛𝑛)� �𝑓𝑓𝑎𝑎𝑎𝑎 2�(𝑚𝑚𝑢𝑢𝑓𝑓𝑡𝑡 𝑚𝑚 4�)��𝑓𝑓𝑎𝑎𝑎𝑎 𝑛𝑛(𝑚𝑚𝑢𝑢𝑓𝑓𝑡𝑡 5 �𝑚𝑚)�.

Function for testing equality and inequality. Function which tests whether number 𝑥𝑥 is
bigger or equal to 𝜆𝜆 is defined as 𝐺𝐺 ≡ �𝜆𝜆𝑥𝑥𝜆𝜆. 𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖(𝑥𝑥 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 𝜆𝜆)�. This function is applies 𝑥𝑥
times the function of predecessor on 𝜆𝜆 and if the result is zero, then it follows that 𝑥𝑥 ≥ 𝜆𝜆. If
𝑥𝑥 ≥ 𝜆𝜆 and 𝜆𝜆 ≥ 𝑥𝑥, then 𝑥𝑥 = 𝜆𝜆. This brings us to the definition of the function 𝐸𝐸 which tests
the equality of two numbers: 𝐸𝐸 ≡ �𝜆𝜆𝑥𝑥𝜆𝜆.∧ �𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖(𝑥𝑥 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 𝜆𝜆)��𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖(𝜆𝜆 𝜆𝜆𝑡𝑡𝑡𝑡𝑎𝑎 𝑥𝑥)��.
Interpretation of the functions 𝑥𝑥 > 𝜆𝜆, 𝑥𝑥 < 𝜆𝜆 or 𝑥𝑥 ≤ 𝜆𝜆 can be similarly defined.

4. COMPUTABLE FUNCTIONS IN LAMBDA CALCULUS
4.1. Combinators
Combinator is 𝜆𝜆-term with no free variables. Intuitively, combinators can be understood as
“completely determined operations”, because they have no free variables.
Definition: For the term 𝑖𝑖 we say it is a fix point of term 𝑀𝑀 if it stands 𝑀𝑀𝑖𝑖 =𝛽𝛽 𝑖𝑖.

Table 1. Combinators

𝐾𝐾 ≡ 𝜆𝜆𝑥𝑥. (𝜆𝜆𝜆𝜆. 𝑥𝑥) Combinator which forms a constant
function

1Due to simplification ∨ is not substituted by appropriate term. Similar stands for function
𝐸𝐸 later on in the text.

400

Engineering Education Marko Stanković

𝐵𝐵 ≡ 𝜆𝜆𝑥𝑥. �𝜆𝜆𝜆𝜆. �𝜆𝜆𝑧𝑧. 𝑥𝑥(𝜆𝜆𝑧𝑧)�� Combinator which combines two
functions

𝑆𝑆 ≡ 𝜆𝜆𝑥𝑥. �𝜆𝜆𝜆𝜆. �𝜆𝜆𝑧𝑧. (𝑥𝑥𝑧𝑧)(𝜆𝜆𝑧𝑧)�� Operator of the stronger compositions

𝐶𝐶 ≡ 𝜆𝜆𝑥𝑥. �𝜆𝜆𝜆𝜆. (𝜆𝜆𝑧𝑧. 𝑥𝑥𝑧𝑧𝜆𝜆)� Combinator which switches places
with arguments

𝑌𝑌 ≡ 𝜆𝜆𝑓𝑓. �𝜆𝜆𝑥𝑥. 𝑓𝑓(𝑥𝑥𝑥𝑥)��𝜆𝜆𝑥𝑥. 𝑓𝑓(𝑥𝑥𝑥𝑥)� Curry’s combinator

𝛩𝛩 ≡ �𝜆𝜆𝑥𝑥. �𝜆𝜆𝑓𝑓. �𝑓𝑓(𝑥𝑥𝑥𝑥𝑓𝑓)��� �𝜆𝜆𝑥𝑥. �𝜆𝜆𝑓𝑓. �𝑓𝑓(𝑥𝑥𝑥𝑥𝑓𝑓)��� Turing’s combinator

Curry’s combinaotr 𝑌𝑌 has the property reduce 𝑌𝑌𝑌𝑌 and 𝑌𝑌(𝑌𝑌𝑌𝑌) to the same term. Turing’s
combinator has the property that for each 𝜆𝜆-term 𝑌𝑌 and 𝛩𝛩𝑌𝑌 are reduced to 𝑌𝑌(𝛩𝛩𝑌𝑌). For
more details see Hindley and Seldin, (2008:34).
Theorem (fixed point theorem): Every 𝜆𝜆-term has at least one fixed point.
Proof: It should be proven that for every term 𝐹𝐹 there is term 𝑌𝑌 so that 𝐹𝐹𝑌𝑌 = 𝑌𝑌. Let 𝑊𝑊 ≡
𝜆𝜆𝑥𝑥.𝐹𝐹(𝑥𝑥𝑥𝑥) and 𝑌𝑌 ≡ 𝑊𝑊𝑊𝑊. Then 𝑌𝑌 ≡ 𝑊𝑊𝑊𝑊 ≡ �𝜆𝜆𝑥𝑥.𝐹𝐹(𝑥𝑥𝑥𝑥)�𝑊𝑊 = 𝐹𝐹(𝑊𝑊𝑊𝑊) = 𝐹𝐹𝑌𝑌.

4.2. Computability and definability
Theorem: Function 𝑓𝑓 is computable if and only if it is 𝜆𝜆-definable.
Proof: Let us show that initial functions, functions obtained by composition and recursion
of initial functions, are 𝜆𝜆-definable function. Initial function we can interpret in the
following way:

• function 𝑧𝑧(𝑛𝑛) = 0, is interpreted by term 0�,
• function 𝑠𝑠(𝑥𝑥) = 𝑥𝑥 + 1 is interpreted by function 𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐,
• function of projection 𝑢𝑢𝑖𝑖𝑛𝑛(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑥𝑥𝑖𝑖, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 is interpreted with 𝑢𝑢𝑖𝑖𝑛𝑛 ≡

𝜆𝜆𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. 𝑥𝑥𝑖𝑖.
Let 𝑓𝑓 be function with 𝑘𝑘 variables and let 𝑔𝑔1, … ,𝑔𝑔𝑘𝑘 be 𝜆𝜆–definable function with 𝑛𝑛
variables. Then ℎ(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓�𝑔𝑔1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), … ,𝑔𝑔𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)� function obtained by
composition of the function 𝑓𝑓 and 𝑔𝑔1, … ,𝑔𝑔𝑘𝑘. If 𝐹𝐹, 𝐺𝐺1, … ,𝐺𝐺𝑘𝑘 are terms which interpret
functions 𝑓𝑓,𝑔𝑔1, … ,𝑔𝑔𝑘𝑘 , then function ℎ is 𝜆𝜆-definable and term which represents it is

𝐻𝐻 ≡ 𝜆𝜆𝑥𝑥1, … , 𝑥𝑥𝑛𝑛.𝐹𝐹�𝐺𝐺1(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛), … ,𝐺𝐺𝑘𝑘(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)�.
Now we will present the idea on how recursion can be interpreted in 𝜆𝜆-calculus, and details
of the proof can be seen in Hindley and Seldin, (2008:50). Let ℎ be 𝜆𝜆-definable function
and let 𝐻𝐻 be her interpretation in 𝜆𝜆-calculus. Term 𝐹𝐹 which interprets function 𝑓𝑓 is defined
in the following manner: 𝐹𝐹 ≡ 𝜆𝜆𝑢𝑢𝑥𝑥1, … 𝑥𝑥𝑛𝑛. (𝑹𝑹(𝐻𝐻𝑥𝑥1, … 𝑥𝑥𝑛𝑛)(𝜆𝜆𝑢𝑢𝜆𝜆.𝐻𝐻𝑢𝑢𝜆𝜆𝑥𝑥1, … 𝑥𝑥𝑛𝑛)𝑢𝑢), where 𝑹𝑹
stands for recursive combinatory. This combinatory has the property that for all terms 𝑌𝑌, 𝑌𝑌
and 𝑘𝑘 it stands 𝑹𝑹𝑌𝑌𝑌𝑌 0� ⊳𝛽𝛽 𝑌𝑌 and 𝑹𝑹𝑌𝑌𝑌𝑌 (𝑘𝑘 + 1)���������� ⊳𝛽𝛽 𝑌𝑌𝑘𝑘�(𝑹𝑹𝑹𝑹𝑹𝑹 𝑘𝑘�).
Let 𝐺𝐺 be the interpretation of the function 𝑔𝑔. Than the operation of minimization
𝑚𝑚𝑖𝑖𝑛𝑛
𝑚𝑚

(𝑔𝑔(𝑥𝑥1, … 𝑥𝑥𝑛𝑛,𝑚𝑚) = 0) is interpreted by term

�𝑌𝑌 �𝜆𝜆𝑓𝑓. 𝜆𝜆𝑚𝑚. 𝑖𝑖𝑓𝑓 �𝑖𝑖𝑠𝑠𝑧𝑧𝑡𝑡𝑡𝑡𝑖𝑖�𝐺𝐺(𝑥𝑥1, … 𝑥𝑥𝑛𝑛,𝑚𝑚�)��𝑚𝑚��𝑓𝑓(𝑠𝑠𝑢𝑢𝑐𝑐𝑐𝑐 𝑚𝑚�)���0�.

401

Engineering Education Marko Stanković

This proves that the class of 𝜆𝜆-definable functions contains all the initial functions and that
it is closed for composition, recursion and minimization. Therefore, this class contains all
computable functions. Let us present the idea of the reverse claim.
Let us suppose that function 𝑓𝑓 is represented by 𝜆𝜆-term 𝑌𝑌. If 𝑓𝑓 is 𝑛𝑛-ary function, than let us
suppose that her argument is (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) and let us write down the term 𝑌𝑌𝑥𝑥1���… 𝑥𝑥𝑛𝑛���. Than
reductions are done until we reach a numeral and we return this as an answer; by the way,
the function is not defined. Based on Church’s thesis, it follows that the function is
computable.

5. CONCLUSION
Although Alonzo Church had designed 𝜆𝜆-calculation as a basis for constructive logic, this
formalization has become one of the models for computating functions with tremendous
application in informatics. Because of his extreme expressiveness, lambda terms can
express complex computer data such as numbers, Boolean values, binary trees and similar,
while for computation of function 𝛽𝛽-reduction is used. Recursive functions can be
interpreted based in the Fixed-point theorem and 𝑌𝑌 combinator. The connection between 𝜆𝜆-
calculus and programming is best shown in correspondence between 𝜆𝜆-calculus and
program language ALGOL 60 (Landin, 1965), as well as the fact that 𝜆𝜆-computaion forms
the basis of the program language LISP. Michaelson (2011) writes about the basics of
functional programing and lambda computation.

REFERENCES
[1] Enderton, H. (2002). A Mathematical Introduction to Logic (Second ed). USA:

Elsevier.
[2] Hindley, R., Seldin, J. (2008). Lambda-Calculus and Combinators, an Introduction.

New York: Cambridge University Press.
[3] Krivine, Ј. (1993). Lambda-calculus, types and models, (Translated from french by

René Cori). Paris, Ellis Horwood.
[4] Landin, P. (1965). Correspondance between ALGOL 60 and Church’s Lambda-

notation: Part I. Communications of the ACM CACM, 8(2), 89-101.
doi:10.1145/363744.363749

[5] Mazzola, G., Milmeiste, G., Weissmann, J. (2005). ComprehensiveMathematics for
Computer Scientists 2. Berlin: Springer.

[6] Michaelson, G. (2011). AN INTRODUCTION TO FUNCTIONAL PROGRAMMING
THROUGH LAMBDA CALCULUS. Dover Publications.

[7] Ognjanović, Z., Krdžavac, N. (2004). Uvod u teorijsko računarstvo. Beograd –
Kragujevac.

402

	1. INTRODUCTION
	1.1. Primitive recursive functions

	2. CHURCH’S NUMERALS, DEFINABILITY
	2.1. Natural numbers
	2.2. Lambda definability
	2.3. Boolean values

	3. Arithemtics on church’s numerals
	4. Computable functions in lambda calculus
	4.1. Combinators
	4.2. Computability and definability

	5. Conclusion

